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Abstract

The three-dimensional Green’s functions due to a point force in composite laminates are solved by using generalized
Stroh formalism and two-dimensional Fourier transforms. Each layer of the composite is generally anisotropic and
linearly elastic. The interfaces between different layers are parallel to the top and bottom surfaces of the composite and
are perfectly bonded. The Green’s functions of point forces applied at the free surface, interface, and in the interior
of a layer are derived in the Fourier transformed domain respectively. The surfaces are imposed by a proportional
spring-type boundary condition. The spring-type condition may be reduced to traction-free, displacement-fixed, and
mirror-symmetric conditions. Numerical examples are given to demonstrate the validity and elegance of the present
formulation of three-dimensional point-force Green’s functions for composite laminates.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fundamental three-dimensional Green’s functions in the theory of linear elasticity have been studied by
many researchers. The Green’s function of a point force applied in an infinite isotropic solid was first solved
by Kelvin (1848). The Green’s functions of a point force perpendicular to and parallel to the plane surface
of a semi-infinite isotropic medium have been furnished by Boussinesq (1885) and Cerruti (1888), respec-
tively. A concentrated force, applied at a point in a semi-infinite space, has been considered by Mindlin
(1936). Mindlin also showed that the half-space Green’s function can be obtained by superposition of 18
nuclei of strain derived from the Kelvin solution.

For three-dimensional generally anisotropic solids, a line integral representation of the Green’s function
in an infinite medium has been investigated by Fredholm (1900), Lifshitz and Rozenzweig (1947), Synge
(1957), and Mura (1987). For the special case of transversely isotropic materials, explicit forms of the
Green’s function have been obtained by Lifshitz and Rozenzweig (1947), Elliott (1948), Kroner (1953),
Willis (1969), Lejcek (1965), and Pan and Chou (1976). Pan and Chou (1979a,b) have developed the Green’s
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functions of a point force applied in a semi-infinite and in two semi-infinite transversely isotropic solids.
Pan (1997) has derived the static Green’s functions in multilayered transversely isotropic and isotropic half-
spaces by using the propagator matrix method.

Stroh (1958, 1962) developed a powerful and elegant six-dimensional theory of dislocations, line forces
and surface waves in generally anisotropic elastic solids in two dimensions. Unlike the two-dimensional
anisotropic solutions developed by Green and Zerna (1954) which are restricted to plane-strain deforma-
tion, the Stroh formalism applied to generally anisotropic elastic materials for which all three displacement
components are coupled. Also, unlike the Lekhnitskii’s formalism (1963) which breaks down for ortho-
tropic materials and requires a special treatment. The method provides solutions for dislocations in terms of
eigenvalues and eigenvectors of a six-dimensional eigenvalue problem. Willis (1966) derived the surface
Green'’s function for half-space. Using Stroh formalism, the explicit form of 3-D Green’s function of a point
force in an infinite generally anisotropic solid has been derived by Barnett and Lothe (1973) in terms of
sextic eigenvalue expression. The Green’s function of a point force applied at the surface of a semi-infinite
generally anisotropic solid has been developed by Barnett and Lothe (1975) using Stroh formalism and
Fourier transform technique. They also showed that, by applying two-dimensional Fourier transforms to
the 3-D equilibrium equation, the eigenvalues and associated eigenvectors in the transformed space are
analogous to the Stroh formalism in two dimensions. Ting (1996) presented the Green’s functions for half-
space and bimaterials in the two-dimensional Fourier transformed space. Ting and Lee (1997) obtained an
explicit expression in terms of Stroh eigenvalues for three-dimensional Green’s function in generally an-
isotropic elastic solids. Wang (1997) provided another explicit expansion for Green’s functions in an infinite
space by means of integral representation technique and an application of complex variable residual cal-
culus. Recently, Yue (1999) developed a layered Green’s function and Pan and Yuan (2000a,b) obtained
bimaterial Green’s functions including piezoelectric materials.

In this paper, the three-dimensional Green’s function due to a point force in multilayered composite
laminates is solved by using Stroh formalism and two-dimensional Fourier transforms. Each layer of the
material is homogeneous, generally anisotropic, and linearly elastic. The interfaces are parallel to the top
and bottom surfaces of the composite and are perfectly bonded. The top and bottom surfaces are imposed
by a proportional spring-type boundary condition, which can be reduced to traction-free, displacement-
fixed and mirror-symmetric conditions. Since the solutions are first derived in the Fourier transformed
domain, Fourier inverse transform has to be carried out to recover the physical quantities. The formulation
is described in Section 2. In Section 3, numerical examples are given to demonstrate the validity and ele-
gance of the present formulation of three-dimensional elastostatic Green’s functions for generally aniso-
tropic composite laminates. Conclusions are given in Section 4.

2. Formulation

Consider a composite laminate that consists of # layers of different generally anisotropic elastic materials
as shown in Fig. 1. Let a Cartesian coordinate system (x;,x,,x3;) be chosen such that the x;—x, plane lies on
the top surface of the laminate and the composite occupy x; > 0. Each layer of the laminate occupies the
region i,y <x3<h; (j=1,2,...,n) with 0 = hy < h; < --- < h, and the thickness of each layer, J; is ar-
bitrary. If h, = co, the composite is a layered half-space. Across each interface at x; =#h; (i=1,2,...,
n — 1), the continuity condition of displacement and traction is imposed.

The equation of equilibrium in terms of displacement u; in the absence of body forces is expressed as

Cijkluk,lj =0, (1)

where Cyj, is the elastic stiffness tensor, and the convention of summation on repeated subscript indices over
their range is implied. In the following, we derive the general solution of anisotropic materials in Stroh
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Fig. 1. An n-layered composite laminate.

formalism and Fourier transforms, followed by the Green’s function due to a point force for composite
laminates.

2.1. General solution in Stroh formalism

By applying two-dimensional Fourier transforms (y,)») for (x;,x;) in Eq. (1), one obtains

Ciapyayptty + 1(Ciugs + Cizpn)Vatis 3 — Cipstie33 = 0, (2)
where the Greek subscripts take a value from 1 to 2, and
ui(n,»2,%3) = // u;(x1, X2, x3)e” ) dxy dxy, (3)

in which the integral limits in both coordinates are from —oo to co. Solving the above ordinary differential
equation yields a general solution as

u(y1,y,%3) = ae” ", (4)
where 7 is the norm of (y;,)»), and p and a satisfy the eigenrelation

[Q+p(R+R")+p*Tla=0 (5)
with

Ou = Cigpnang, Ry = Ciyany, Tix = Cus. (6)

In the above, n; = cos 6, and n, = sin 0, where 0 together with 5 are the polar coordinates of transform
plane (y1,)»). The superscript T denotes the matrix transpose. Eshelby et al. (1953) showed that all eigen-
values of Eq. (5) cannot be real. Note that Eq. (5) is the Stroh eigenrelation for the oblique plane spanned
by (n1,n,,0) and (0,0, 1).

Define two vectors consisting of the out-of-plane and in-plane stress components respectively as

L= (61370237033)T and s; = (0117012,022)T~ (7)
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Applying the Fourier transforms with (x;,x,) and utilizing Eq. (4) through the Hooke’s law 6;; = Cjju s,
we find

= —inhe ", (8)

§ = —inee P 9)
where

b= (R"+pT)a= —é(Q—FpR)a, (10)

¢ = Da with Dy = Cyyun, + pCris for k=1,2, and D3; = Cyyun, + pCrss. (11)

The six pairs of eigenvalue and associated eigenvectors, p;, a;, b;, and ¢; are arranged by
Imp; >0, pys=p, @s=a, bis=b, ci3=¢ (i=1,2,3),
A:[alaa27a3]7 B = [blab2,b3]v C= [61,62,6‘3],

where Im stands for the imaginary part and the overbar denotes the complex conjugate. Assuming that p;
are distinct, the general solutions are obtained by superposing the six solutions of Eqgs. (4), (8), and (9) as

= in’lz<e’ii’”x3>v + in’1A<e’iI’"x3>w, (12)
t=Be ")y + Ble ")w, (13)
§=C(e ")y + Cle P )w, (14)

where v(y) and w(y) are unknown complex vectors and
(e‘i””x3> = diag[e‘i”‘”'“, g P e‘ip3’7x3]. (15)
It should be noted that the matrix C above is different from the fourth-order elastic stiffness tensor Cjy,.
2.2. Green’s function for composite laminates
Let a concentrated force f be applied at an arbitrary point (x,x),d). Applying the previous general

solutions, the total solution due to the concentrated force f in the composite laminate (Fig. 1) can be
written in the following form,

- ivad (s s T Bl . i n(ea—

(1,32, %3)€ 0 = A0) (v1, 32, %3) + i Ay (7P Iy y, i TN, (TP ) (16)

im(yl,yz,x3)e’iy“"2 — ~S:) (1,2,%3) + By (e Pl hm )y B (e e hm)yy, (17)

5, (y17y27x3>efiy«)f2 — gr(s) (1, 12,%3) + fm<e*iﬁm'7(xrhm71)>vm +C, <€fipmﬂ(xrhm)>wm7 (18)
form =1,2,...,n, where the subscript m denotes the mth layer, and v,, and w,, are unknown vectors to be

determined from interfacial and boundary conditions. In addition, #*, #¥ and 5 are the given special
solutions. According to the location of applying force f, the special solutions are chosen properly such that
the general-part solutions, i.e. unknown tensors v,, and w,,, are nonsingular. Four cases of f applied at four
different locations are considered: (1) on the top surface (d = 4y = 0); (2) in the kth layer (4, < d < Iy);
(3) on the kth interface (d = A;); and (4) on the bottom surface (A = h,). These cases are described below.
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In the first case where the point force is applied on the top surface x; = 0 (d = hy = 0), the special so-
lutions are prescribed as

i = —ig~ ' Ay (e P™)B ' f (19)

i = _B,(e""™)B,'f, (20)
——1

§)) = —Ci(e"™)B, f (21)

for the first layer and equal to zero for the remaining layers. Note that the above equations are the surface
Green’s function in a half-space derived by Willis (1966).
In the second where the point force is applied in the kth layer (h,_; < d < k), the special solutions are
given by
9 i1 Ay (e =Dy 4! (BAi1 - ) 1f, x3 <d,
u, = 1\ ! (22)
i1 A (e Pty 4 (BA ' B4, ) £, x>d,

—1

N By (e it d>>A;1(BA;‘ —E_,jl) [ x<d,
7 — 1 il (23)
Bl o)A, (Ba,' - BA,') f. w>d,
k(v —d) !
o eemea (Ba) - BA") f w<a,
o ; (24)

C (e ps=d) 4 (BA‘ __T‘) f, m>d

for the kth layer in which f is applied, and equal to zero for all of the other layers. The above special
solutions are the infinite-space Green’s function, whose physical counterparts can be evaluated analytically
by Ting and Lee (1997) and Pan and Yuan (2000a,b).

In the third case where the point force is applied on the interface x; = h;_; between the (k — 1)th and kth
layer (d = h;_1), the special solutions are assigned to be the interfacial Green’s functions of bimaterials
(Ting, 1996),

)| = i Ay (e hen) 41 1(Bk 14, — Bid, ) f (25)
il(i)l — Bk_l<e*ipk—l’7<x37hk 1 >A (Bk 1Ak L= Bk ) f, (26)
(s ] x3— - - 24"
sl(c—>1 = Ciile P 1n(x3 hk*l)>Ak711 (Bk—lAkjl - BA, ) f, (27)
- -1
il/(:) — inflA/L<e ipn(xs—hi—y >A (Bk lAk . _BkA ) f, (28)
-1
Bk< e Pk —hi1 >A (Bk lAk 1kaA ) f, (29)

-1
s,((> — Ck< e (3 =i }A (Bk ]Ak 1*BkA ) f (30)
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for the (k — 1)th and kth layers that share the interface. In all of the other layers, the special solutions are
equal to zero.

In the last case where the point force is applied at the bottom surface (x; = d = A,), which is similar to
the first case, the surface Green’s function of an upper half-space is used to substitute the special solution of
the nth layer. Otherwise, the special solution is taken to be equal to zero. This is written as

,2’(13) _ ir,‘IA,,<e_ip""(x3_h”)>3;lf, (31)
i) = B,(e " )8, S, 32)
5 = C, (e s ) B 1 (33)

To obtain the unknown general-part solution, we consider a proportional spring-type boundary con-
dition for the top and bottom surfaces, expressed as

G]lll +H1t1 =0 at X3 = 0, G,,lln +H,,tn =0 at X3 = hn, (34)

where G, H, G,, and H, are given constant matrices. The continuity in displacement and traction along
the interfaces requires

Up | = Uy, L, | =1, at x3 = hm~ (35)

Substituting Egs. (16) and (17) into Egs. (34) and (35) yields following linear system of algebraic
equations:

Eq =P, (36)

T - . :
where g(= [v],wl,... vI wl vl wl]c ) is an unknown vector, B is a constant vector of the same di-

Y m? m?»* " p?
mension as ¢, and E is the stiffness matrix of dimensions 6n x 6n. If E is invertible, the unknown vectors v,
and w,, can be solved for all layers at a given point y in the Fourier transformed domain. By substituting
them back into Egs. (16)—(18), the Green’s displacement and stress are obtained in the transformed domain.
Once the transformed-domain solutions are derived, the physical-domain Green’s function due to a point

force is derived by using Fourier inverse transform as
1 ~ —iy,x,
ui(X1,%2,X3) = —— // u;(y1,y2,x3)e” " dyy dys, (37)
(2m)

where the integral limits in both coordinates are from —oo to co. Or, the inverse transform may be carried
out, sometimes more conveniently, in the polar coordinates,

1 - .
u; (x1,x2,x3) ZW// ni;(yr, y2, x3)e” " dndo, (38)
T

where the integral limit in # is from 0 to oo, and in 6 from 0 to 2x.

3. Numerical examples

For an infinite composite laminate with finite thickness, not all kinds of boundary conditions lead to
meaningful physical solutions due to a point force. In some cases, a physical solution does not even exist.
For example, for an infinite plate, to impose traction-free boundary condition along both the top and
bottom surfaces results in an indefinite displacement (not just singular) due to any type of out-of-plane
loading, concentrated or distributed. In these cases, the corresponding Fourier transformed domain so-
lutions are not meaningful.
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In the following, we apply the previous formulation to examine the three-dimensional displacement and
stress in composite laminates due to a point force under a couple of common types of boundary conditions.
A composite laminate of ten plies of identical orthogonal materials with stacking sequence (0/30/ — 30/
90/45/ —45/0/60/ — 60/90) is considered. The orthotropic material represents a unidirectional fiber-
reinforced composite plate, with the fibers lying in the horizontal plane. The number in the stacking
sequence indicates the in-plane rotation angle of each ply relative to the reference 0°-ply where the fibers lie
in the 0° direction. The elastic constants are given by E; = 138 GPa, E; = E; = 14.5 GPa, py; = ;3 = upp, =
5.86 GPa, and v,; = vi3 = v, = 0.21. E| will be used to normalize the stress quantities. The total thickness
of the laminate is H, and hence that of each ply is 0.1H. H will be used to normalize quantities of length
dimension, such as coordinate and displacement. A computational efficient numerical technique (Yang and
Pan, 2002) is used to carry out the numerical integral of the Green’s functions.

3.1. Case 1: One surface being displacement-fixed

First considered is the case of the laminate with one surface being displacement-fixed and the other one
free of traction. This is expressed, corresponding to Eq. (34) as

Gl :07 Hl :IS><37 Gn :I3x37 Hn :07 (39)

where [ is the identity matrix. Also supposed is a unit point force applied at (0,0,0) on the traction-free
surface in either one of the three coordinates (Fig. 1). The displacement and stress induced by the point
force are evaluated at points along a circle around the loading point on the traction-free surface, and along
a vertical line from (H,0,0) to (H,0,H). In the former case, the radius of the circle is H#. The results are
plotted in Figs. 2-5.

Figs. 2 and 3 show the variation of displacement and nonzero (in-plane) stress components along the
circle due to the point force applied in the x3-axis and in the x,-axis respectively. It can be seen that both of
the displacement and stress are at significant variance along the circle due to the complicated layup of the
composite laminate. Figs. 4 and 5 show the variation of displacement and nonzero (in-plane) stress com-
ponents along the vertical line due to the point force applied along the x;-axis and along the x;-axis re-
spectively. These results show that the boundary conditions on the laminate surfaces and the interfacial
continuity conditions between the different plies are satisfied, suggesting the validity of the previous for-
mulation. The in-plane stress components are discontinuous across the interfaces, as expected due to the
discontinuity of materials properties. On the other hand, their vertical variations in the individual plies are
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Fig. 2. Variation of normalized displacement and nonzero stress components along a circle (H cos 0, H sin 0,0) due to a surface unit
point force applied in the x;-axis (Case 1).
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Fig. 4. Variation of normalized displacement and nonzero stress components along a circle (H cos 6, H sin 6,0) due to a surface unit
point force applied in the x,-axis (Case 1).

intriguing that in some plies, the stress components, for example, oy, increase with distance to the loading
point, but decrease in the others. The continuous out-of-plane stress components show kinks across the
interfaces between different plies, i.e., lack of continuity in their vertical-direction derivatives.

3.2. Case 2: One surface being mirror-symmetric

Let us consider the case of the laminate with one surface being mirror-symmetric and the other one free
of traction. This is expressed, corresponding to Eq. (34) as
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The same as in Case 1, a unit point force is applied at (0,0, 0) on the traction-free surface. The displacement
and stress induced by the point force are evaluated at points along a circle of radius H around the loading
point on the traction-free surface, and along a vertical line from (H,0,0) to (H,0,H). The results are
plotted in Figs. 6-9.

Similar to the previous Figs. 2-5, Figs. 6 and 7 show the variation of displacement and nonzero (in-plane)
stress components along the circle due to the point force applied in the x3;-axis and x,-axis respectively.
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Fig. 6. Variation of normalized displacement and nonzero stress components along a circle (H cos 0, H sin 0,0) due to a surface unit
point force applied in the x;-axis (Case 2).
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Fig. 7. Variation of normalized displacement and stress components along a vertical line (H,0,x;) due to a surface unit point force
applied in the x;-axis (Case 2).
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Fig. 8. Variation of normalized displacement and nonzero stress components along a circle (H cos 6, H sin 6,0) due to a surface unit
point force applied in the x,-axis (Case 2).

Figs. 8 and 9 show the variation of displacement and nonzero (in-plane) stress components along the
vertical line due to the point force applied along the x;-axis and x,-axis respectively. As compared to the
previous case, these results show very similar characteristics, such as the satisfaction of boundary and
interfacial conditions. Also, it is seen that the change of the boundary condition (on the opposite surface to
where the point force is applied) makes a little change on the displacement and stress fields, especially the
stress field, along the circle on the traction-free surface. On the other hand, these fields are altered sig-
nificantly as the observation point gets closer to the surface where the boundary conditions are altered.
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Fig. 9. Variation of normalized displacement and stress components along a vertical line (H,0,x;) due to a surface unit point force
applied in the x,-axis (Case 2).

4. Conclusions

Three-dimensional Green’s functions due to a point force in generally anisotropic composite laminates
have been derived within the framework of extended Stroh formalism and Fourier transforms. The in-
terfaces between different plies are perfectly bonded. The Green’s functions for the point forces applied at
the free surface, interface, and in the interior of a layer have been derived in the Fourier transformed
domain respectively. A proportional spring-type boundary condition is imposed on the top and bottom
surfaces. The spring-type boundary condition may be reduced to traction-free, displacement-fixed, and
mirror-symmetric conditions. Since the Green’s functions are attained in the Fourier transformed domain,
Fourier inverse transform is performed using a computational efficient numerical approach to express the
Green’s functions in the physical domain so that they can be implemented in the boundary element method.

Numerical examples have been given with a ten-layered orthotropic composite laminate with one surface
being displacement-fixed or mirror-symmetric and the other one being free of traction. The results showed
that the boundary and interfacial continuity conditions are satisfied in the computed Green’s solutions,
suggesting the validity of the present formulation and computational algorithm. The interesting charac-
teristics of the Green’s fields due to a surface point force have also been discussed. These fields are rather
complicated in the composite laminate.

Because the Green’s functions satisfy the interlaminar continuities and top and bottom traction-free
surfaces, modeling of the problems such as composite laminates with cutouts using boundary element
method becomes truly two-dimensional and discretization is only needed along the cutouts and lateral outer
boundaries. Therefore, in designing the composite bolted joints with many layers, the boundary element
method is robust and offers much better solution accuracy in modeling joints of complex geometries (Pan
et al., 2001; Yang et al., submitted for publication).
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