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Abstract

The three-dimensional Green�s functions due to a point force in composite laminates are solved by using generalized

Stroh formalism and two-dimensional Fourier transforms. Each layer of the composite is generally anisotropic and

linearly elastic. The interfaces between different layers are parallel to the top and bottom surfaces of the composite and

are perfectly bonded. The Green�s functions of point forces applied at the free surface, interface, and in the interior

of a layer are derived in the Fourier transformed domain respectively. The surfaces are imposed by a proportional

spring-type boundary condition. The spring-type condition may be reduced to traction-free, displacement-fixed, and

mirror-symmetric conditions. Numerical examples are given to demonstrate the validity and elegance of the present

formulation of three-dimensional point-force Green�s functions for composite laminates.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fundamental three-dimensional Green�s functions in the theory of linear elasticity have been studied by

many researchers. The Green�s function of a point force applied in an infinite isotropic solid was first solved

by Kelvin (1848). The Green�s functions of a point force perpendicular to and parallel to the plane surface

of a semi-infinite isotropic medium have been furnished by Boussinesq (1885) and Cerruti (1888), respec-

tively. A concentrated force, applied at a point in a semi-infinite space, has been considered by Mindlin
(1936). Mindlin also showed that the half-space Green�s function can be obtained by superposition of 18

nuclei of strain derived from the Kelvin solution.

For three-dimensional generally anisotropic solids, a line integral representation of the Green�s function
in an infinite medium has been investigated by Fredholm (1900), Lifshitz and Rozenzweig (1947), Synge

(1957), and Mura (1987). For the special case of transversely isotropic materials, explicit forms of the

Green�s function have been obtained by Lifshitz and Rozenzweig (1947), Elliott (1948), Kroner (1953),

Willis (1969), Lejcek (1965), and Pan and Chou (1976). Pan and Chou (1979a,b) have developed the Green�s
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functions of a point force applied in a semi-infinite and in two semi-infinite transversely isotropic solids.

Pan (1997) has derived the static Green�s functions in multilayered transversely isotropic and isotropic half-

spaces by using the propagator matrix method.

Stroh (1958, 1962) developed a powerful and elegant six-dimensional theory of dislocations, line forces
and surface waves in generally anisotropic elastic solids in two dimensions. Unlike the two-dimensional

anisotropic solutions developed by Green and Zerna (1954) which are restricted to plane-strain deforma-

tion, the Stroh formalism applied to generally anisotropic elastic materials for which all three displacement

components are coupled. Also, unlike the Lekhnitskii�s formalism (1963) which breaks down for ortho-

tropic materials and requires a special treatment. The method provides solutions for dislocations in terms of

eigenvalues and eigenvectors of a six-dimensional eigenvalue problem. Willis (1966) derived the surface

Green�s function for half-space. Using Stroh formalism, the explicit form of 3-D Green�s function of a point

force in an infinite generally anisotropic solid has been derived by Barnett and Lothe (1973) in terms of
sextic eigenvalue expression. The Green�s function of a point force applied at the surface of a semi-infinite

generally anisotropic solid has been developed by Barnett and Lothe (1975) using Stroh formalism and

Fourier transform technique. They also showed that, by applying two-dimensional Fourier transforms to

the 3-D equilibrium equation, the eigenvalues and associated eigenvectors in the transformed space are

analogous to the Stroh formalism in two dimensions. Ting (1996) presented the Green�s functions for half-
space and bimaterials in the two-dimensional Fourier transformed space. Ting and Lee (1997) obtained an

explicit expression in terms of Stroh eigenvalues for three-dimensional Green�s function in generally an-

isotropic elastic solids. Wang (1997) provided another explicit expansion for Green�s functions in an infinite
space by means of integral representation technique and an application of complex variable residual cal-

culus. Recently, Yue (1999) developed a layered Green�s function and Pan and Yuan (2000a,b) obtained

bimaterial Green�s functions including piezoelectric materials.

In this paper, the three-dimensional Green�s function due to a point force in multilayered composite

laminates is solved by using Stroh formalism and two-dimensional Fourier transforms. Each layer of the

material is homogeneous, generally anisotropic, and linearly elastic. The interfaces are parallel to the top

and bottom surfaces of the composite and are perfectly bonded. The top and bottom surfaces are imposed

by a proportional spring-type boundary condition, which can be reduced to traction-free, displacement-
fixed and mirror-symmetric conditions. Since the solutions are first derived in the Fourier transformed

domain, Fourier inverse transform has to be carried out to recover the physical quantities. The formulation

is described in Section 2. In Section 3, numerical examples are given to demonstrate the validity and ele-

gance of the present formulation of three-dimensional elastostatic Green�s functions for generally aniso-

tropic composite laminates. Conclusions are given in Section 4.

2. Formulation

Consider a composite laminate that consists of n layers of different generally anisotropic elastic materials
as shown in Fig. 1. Let a Cartesian coordinate system ðx1; x2; x3Þ be chosen such that the x1–x2 plane lies on
the top surface of the laminate and the composite occupy x3 P 0. Each layer of the laminate occupies the

region hj�1 6 x3 6 hj ðj ¼ 1; 2; . . . ; nÞ with 0 ¼ h0 < h1 < � � � < hn and the thickness of each layer, dk is ar-

bitrary. If hn ¼ 1, the composite is a layered half-space. Across each interface at x3 ¼ hj ði ¼ 1; 2; . . . ;
n� 1Þ, the continuity condition of displacement and traction is imposed.

The equation of equilibrium in terms of displacement uk in the absence of body forces is expressed as

Cijkluk;lj ¼ 0; ð1Þ

where Cijkl is the elastic stiffness tensor, and the convention of summation on repeated subscript indices over
their range is implied. In the following, we derive the general solution of anisotropic materials in Stroh
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formalism and Fourier transforms, followed by the Green�s function due to a point force for composite

laminates.

2.1. General solution in Stroh formalism

By applying two-dimensional Fourier transforms ðy1; y2Þ for ðx1; x2Þ in Eq. (1), one obtains

Ciakbyayb~uuk þ iðCiak3 þ Ci3kaÞya~uuk;3 � Ci3k3~uuk;33 ¼ 0; ð2Þ
where the Greek subscripts take a value from 1 to 2, and

~uuiðy1; y2; x3Þ ¼
ZZ

uiðx1; x2; x3ÞeiyðaÞxðaÞ dx1 dx2; ð3Þ

in which the integral limits in both coordinates are from �1 to 1. Solving the above ordinary differential

equation yields a general solution as

~uuðy1; y2; x3Þ ¼ ae�ipgx3 ; ð4Þ
where g is the norm of ðy1; y2Þ, and p and a satisfy the eigenrelation

½Q þ pðRþ RTÞ þ p2T	a ¼ 0 ð5Þ
with

Qik ¼ Ciakbnanb; Rik ¼ Ciak3na; Tik ¼ Ci3k3: ð6Þ
In the above, n1 ¼ cos h, and n2 ¼ sin h, where h together with g are the polar coordinates of transform

plane ðy1; y2Þ. The superscript T denotes the matrix transpose. Eshelby et al. (1953) showed that all eigen-

values of Eq. (5) cannot be real. Note that Eq. (5) is the Stroh eigenrelation for the oblique plane spanned

by ðn1; n2; 0Þ and ð0; 0; 1Þ.
Define two vectors consisting of the out-of-plane and in-plane stress components respectively as

ti 
 ðr13; r23; r33ÞT and si 
 ðr11; r12; r22ÞT: ð7Þ

Fig. 1. An n-layered composite laminate.
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Applying the Fourier transforms with ðx1; x2Þ and utilizing Eq. (4) through the Hooke�s law rij ¼ Cijkluk;l,
we find

~tt ¼ �igbe�ipgx3 ; ð8Þ

~ss ¼ �igce�ipgx3 ; ð9Þ

where

b ¼ ðRT þ pTÞa ¼ � 1

p
ðQ þ pRÞa; ð10Þ

c ¼ Da with Dkl ¼ C1klana þ pC1kl3 for k ¼ 1; 2; and D3l ¼ C22lana þ pC22l3: ð11Þ

The six pairs of eigenvalue and associated eigenvectors, pi, ai, bi, and ci are arranged by

Impi > 0; piþ3 ¼ �ppi; �aaiþ3 ¼ �aai; biþ3 ¼ �bbi; ciþ3 ¼ �cci ði ¼ 1; 2; 3Þ;

A ¼ ½a1; a2; a3	; B ¼ ½b1; b2; b3	; C ¼ ½c1; c2; c3	;

where Im stands for the imaginary part and the overbar denotes the complex conjugate. Assuming that pi
are distinct, the general solutions are obtained by superposing the six solutions of Eqs. (4), (8), and (9) as

~uu ¼ ig�1Ahe�i�ppgx3ivþ ig�1Ahe�ipgx3iw; ð12Þ

~tt ¼ Bhe�i�ppgx3ivþ Bhe�ipgx3iw; ð13Þ

~ss ¼ Che�i�ppgx3ivþ Che�ipgx3iw; ð14Þ

where vðyÞ and wðyÞ are unknown complex vectors and

he�ipgx3i ¼ diag½e�ip1gx3 ; e�ip2gx3 ; e�ip3gx3 	: ð15Þ

It should be noted that the matrix C above is different from the fourth-order elastic stiffness tensor Cijkl.

2.2. Green’s function for composite laminates

Let a concentrated force f be applied at an arbitrary point ðx01; x02; dÞ. Applying the previous general

solutions, the total solution due to the concentrated force f in the composite laminate (Fig. 1) can be

written in the following form,

~uumðy1; y2; x3Þe�iyax0a ¼ ~uuðsÞm ðy1; y2; x3Þ þ ig�1Amhe�i�ppmgðx3�hm�1Þivm þ ig�1Amhe�ipmgðx3�hmÞiwm; ð16Þ

~ttmðy1; y2; x3Þe�iyax0a ¼ ~ttðsÞm ðy1; y2; x3Þ þ Bmhe�i�ppmgðx3�hm�1Þivm þ Bmhe�ipmgðx3�hmÞiwm; ð17Þ

~ssmðy1; y2; x3Þe�iyax0a ¼ ~ssðsÞm ðy1; y2; x3Þ þ Cmhe�i�ppmgðx3�hm�1Þivm þ Cmhe�ipmgðx3�hmÞiwm; ð18Þ

for m ¼ 1; 2; . . . ; n, where the subscript m denotes the mth layer, and vm and wm are unknown vectors to be

determined from interfacial and boundary conditions. In addition, ~uuðsÞm , ~ttðsÞm and ~ssðsÞm are the given special

solutions. According to the location of applying force f , the special solutions are chosen properly such that

the general-part solutions, i.e. unknown tensors vm and wm, are nonsingular. Four cases of f applied at four
different locations are considered: (1) on the top surface ðd ¼ h0 ¼ 0Þ; (2) in the kth layer ðhk�1 < d < hkÞ;
(3) on the kth interface ðd ¼ hkÞ; and (4) on the bottom surface ðh ¼ hnÞ. These cases are described below.
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In the first case where the point force is applied on the top surface x3 ¼ 0 ðd ¼ h0 ¼ 0Þ, the special so-

lutions are prescribed as

~uu
ðsÞ
1 ¼ �ig�1A1he�i�pp1gx3iB�1

1 f ; ð19Þ

~tt
ðsÞ
1 ¼ �B1he�i�pp1gx3iB�1

1 f ; ð20Þ

~ss
ðsÞ
1 ¼ �C1he�i�pp1gx3iB�1

1 f ð21Þ
for the first layer and equal to zero for the remaining layers. Note that the above equations are the surface

Green�s function in a half-space derived by Willis (1966).

In the second where the point force is applied in the kth layer ðhk�1 < d < hkÞ, the special solutions are

given by

~uu
ðsÞ
k ¼

ig�1Akhe�ipkgðx3�dÞiA�1
k BA�1

k � BA
�1

k

� ��1

f ; x3 < d;

ig�1Akhe�i�ppkgðx3�dÞiA�1

k BA�1
k � BA

�1

k

� ��1

f ; x3 > d;

8><
>: ð22Þ

~tt
ðsÞ
k ¼

Bkhe�ipkgðx3�dÞiA�1
k BA�1

k � BA
�1

k

� ��1

f ; x3 < d;

Bkhe�i�ppkgðx3�dÞiA�1

k BA�1
k � BA

�1

k

� ��1

f ; x3 > d;

8><
>: ð23Þ

~ss
ðsÞ
k ¼

C khe�ipkgðx3�dÞiA�1
k BA�1

k � BA
�1

k

� ��1

f ; x3 < d;

C khe�i�ppkgðx3�dÞiA�1

k BA�1
k � BA

�1

k

� ��1

f ; x3 > d

8><
>: ð24Þ

for the kth layer in which f is applied, and equal to zero for all of the other layers. The above special
solutions are the infinite-space Green�s function, whose physical counterparts can be evaluated analytically

by Ting and Lee (1997) and Pan and Yuan (2000a,b).

In the third case where the point force is applied on the interface x3 ¼ hk�1 between the ðk � 1Þth and kth
layer ðd ¼ hk�1Þ, the special solutions are assigned to be the interfacial Green�s functions of bimaterials

(Ting, 1996),

~uu
ðsÞ
k�1 ¼ ig�1Ak�1he�ipk�1gðx3�hk�1ÞiA�1

k�1 Bk�1A
�1
k�1

�
� BkA

�1

k

��1

f ; ð25Þ

~tt
ðsÞ
k�1 ¼ Bk�1he�ipk�1gðx3�hk�1ÞiA�1

k�1 Bk�1A
�1
k�1

�
� BkA

�1

k

��1

f ; ð26Þ

~ss
ðsÞ
k�1 ¼ C k�1he�ipk�1gðx3�hk�1ÞiA�1

k�1 Bk�1A
�1
k�1

�
� BkA

�1

k

��1

f ; ð27Þ

~uu
ðsÞ
k ¼ ig�1Akhe�i�ppkgðx3�hk�1ÞiA�1

k Bk�1A
�1
k�1

�
� BkA

�1

k

��1

f ; ð28Þ

~tt
ðsÞ
k ¼ Bkhe�i�ppkgðx3�hk�1ÞiA�1

k Bk�1A
�1
k�1

�
� BkA

�1

k

��1

f ; ð29Þ

~ss
ðsÞ
k ¼ C khe�i�ppkgðx3�hk�1ÞiA�1

k Bk�1A
�1
k�1

�
� BkA

�1

k

��1

f ð30Þ
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for the ðk � 1Þth and kth layers that share the interface. In all of the other layers, the special solutions are

equal to zero.

In the last case where the point force is applied at the bottom surface ðx3 ¼ d ¼ hnÞ, which is similar to

the first case, the surface Green�s function of an upper half-space is used to substitute the special solution of
the nth layer. Otherwise, the special solution is taken to be equal to zero. This is written as

~uuðsÞn ¼ ig�1Anhe�ipngðx3�hnÞiB�1
n f ; ð31Þ

~ttðsÞn ¼ Bnhe�ipngðx3�hnÞiB�1
n f ; ð32Þ

~ssðsÞn ¼ Cnhe�ipngðx3�hnÞiB�1
n f : ð33Þ

To obtain the unknown general-part solution, we consider a proportional spring-type boundary con-

dition for the top and bottom surfaces, expressed as

G1u1 þH1t1 ¼ 0 at x3 ¼ 0; Gnun þHntn ¼ 0 at x3 ¼ hn; ð34Þ
where G1, H1, Gn, and Hn are given constant matrices. The continuity in displacement and traction along

the interfaces requires

um�1 ¼ um; tm�1 ¼ tm at x3 ¼ hm: ð35Þ
Substituting Eqs. (16) and (17) into Eqs. (34) and (35) yields following linear system of algebraic

equations:

Eq ¼ b; ð36Þ
where qð
 ½vT1 ;wT

1 ; . . . ; v
T
m;w

T
m; . . . ; v

T
n ;w

T
n 	

T

6nÞ is an unknown vector, b is a constant vector of the same di-

mension as q, and E is the stiffness matrix of dimensions 6n
 6n. If E is invertible, the unknown vectors vm
and wm can be solved for all layers at a given point y in the Fourier transformed domain. By substituting

them back into Eqs. (16)–(18), the Green�s displacement and stress are obtained in the transformed domain.

Once the transformed-domain solutions are derived, the physical-domain Green�s function due to a point

force is derived by using Fourier inverse transform as

uiðx1; x2; x3Þ ¼
1

ð2pÞ2
ZZ

~uuiðy1; y2; x3Þe�iyaxa dy1 dy2; ð37Þ

where the integral limits in both coordinates are from �1 to 1. Or, the inverse transform may be carried

out, sometimes more conveniently, in the polar coordinates,

uiðx1; x2; x3Þ ¼
1

ð2pÞ2
ZZ

g~uuiðy1; y2; x3Þe�iyaxa dgdh; ð38Þ

where the integral limit in g is from 0 to 1, and in h from 0 to 2p.

3. Numerical examples

For an infinite composite laminate with finite thickness, not all kinds of boundary conditions lead to

meaningful physical solutions due to a point force. In some cases, a physical solution does not even exist.

For example, for an infinite plate, to impose traction-free boundary condition along both the top and

bottom surfaces results in an indefinite displacement (not just singular) due to any type of out-of-plane

loading, concentrated or distributed. In these cases, the corresponding Fourier transformed domain so-
lutions are not meaningful.
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In the following, we apply the previous formulation to examine the three-dimensional displacement and

stress in composite laminates due to a point force under a couple of common types of boundary conditions.

A composite laminate of ten plies of identical orthogonal materials with stacking sequence ð0=30=� 30=
90=45=� 45=0=60=� 60=90Þ is considered. The orthotropic material represents a unidirectional fiber-
reinforced composite plate, with the fibers lying in the horizontal plane. The number in the stacking

sequence indicates the in-plane rotation angle of each ply relative to the reference 0�-ply where the fibers lie

in the 0� direction. The elastic constants are given by E1 ¼ 138 GPa, E2 ¼ E3 ¼ 14:5 GPa, l23 ¼ l13 ¼ l12 ¼
5:86 GPa, and m23 ¼ m13 ¼ m12 ¼ 0:21. E1 will be used to normalize the stress quantities. The total thickness

of the laminate is H , and hence that of each ply is 0.1H . H will be used to normalize quantities of length

dimension, such as coordinate and displacement. A computational efficient numerical technique (Yang and

Pan, 2002) is used to carry out the numerical integral of the Green�s functions.

3.1. Case 1: One surface being displacement-fixed

First considered is the case of the laminate with one surface being displacement-fixed and the other one

free of traction. This is expressed, corresponding to Eq. (34) as

G1 ¼ 0; H1 ¼ I3
3; Gn ¼ I3
3; Hn ¼ 0; ð39Þ

where I is the identity matrix. Also supposed is a unit point force applied at ð0; 0; 0Þ on the traction-free

surface in either one of the three coordinates (Fig. 1). The displacement and stress induced by the point

force are evaluated at points along a circle around the loading point on the traction-free surface, and along

a vertical line from ðH ; 0; 0Þ to ðH ; 0;HÞ. In the former case, the radius of the circle is H . The results are

plotted in Figs. 2–5.

Figs. 2 and 3 show the variation of displacement and nonzero (in-plane) stress components along the

circle due to the point force applied in the x3-axis and in the x2-axis respectively. It can be seen that both of

the displacement and stress are at significant variance along the circle due to the complicated layup of the
composite laminate. Figs. 4 and 5 show the variation of displacement and nonzero (in-plane) stress com-

ponents along the vertical line due to the point force applied along the x3-axis and along the x2-axis re-

spectively. These results show that the boundary conditions on the laminate surfaces and the interfacial

continuity conditions between the different plies are satisfied, suggesting the validity of the previous for-

mulation. The in-plane stress components are discontinuous across the interfaces, as expected due to the

discontinuity of materials properties. On the other hand, their vertical variations in the individual plies are

Fig. 2. Variation of normalized displacement and nonzero stress components along a circle ðH cos h;H sin h; 0Þ due to a surface unit

point force applied in the x3-axis (Case 1).
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intriguing that in some plies, the stress components, for example, r11, increase with distance to the loading

point, but decrease in the others. The continuous out-of-plane stress components show kinks across the

interfaces between different plies, i.e., lack of continuity in their vertical-direction derivatives.

3.2. Case 2: One surface being mirror-symmetric

Let us consider the case of the laminate with one surface being mirror-symmetric and the other one free
of traction. This is expressed, corresponding to Eq. (34) as

Fig. 3. Variation of normalized displacement and stress components along a vertical line ðH ; 0; x3Þ due to a surface unit point force

applied in the x3-axis (Case 1).

Fig. 4. Variation of normalized displacement and nonzero stress components along a circle ðH cos h;H sin h; 0Þ due to a surface unit

point force applied in the x2-axis (Case 1).
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G1 ¼ 0; H1 ¼ I3
3; Gn ¼
0 0 0

0 0 0

0 0 1

0
@

1
A; Hn ¼

1 0 0

0 1 0

0 0 0

0
@

1
A: ð40Þ

The same as in Case 1, a unit point force is applied at ð0; 0; 0Þ on the traction-free surface. The displacement

and stress induced by the point force are evaluated at points along a circle of radius H around the loading

point on the traction-free surface, and along a vertical line from ðH ; 0; 0Þ to ðH ; 0;HÞ. The results are
plotted in Figs. 6–9.

Similar to the previous Figs. 2–5, Figs. 6 and 7 show the variation of displacement and nonzero (in-plane)

stress components along the circle due to the point force applied in the x3-axis and x2-axis respectively.

Fig. 5. Variation of normalized displacement and stress components along a vertical line ðH ; 0; x3Þ due to a surface unit point force

applied in the x2-axis (Case 1).

Fig. 6. Variation of normalized displacement and nonzero stress components along a circle ðH cos h;H sin h; 0Þ due to a surface unit

point force applied in the x3-axis (Case 2).
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Figs. 8 and 9 show the variation of displacement and nonzero (in-plane) stress components along the

vertical line due to the point force applied along the x3-axis and x2-axis respectively. As compared to the
previous case, these results show very similar characteristics, such as the satisfaction of boundary and

interfacial conditions. Also, it is seen that the change of the boundary condition (on the opposite surface to

where the point force is applied) makes a little change on the displacement and stress fields, especially the

stress field, along the circle on the traction-free surface. On the other hand, these fields are altered sig-

nificantly as the observation point gets closer to the surface where the boundary conditions are altered.

Fig. 7. Variation of normalized displacement and stress components along a vertical line ðH ; 0; x3Þ due to a surface unit point force

applied in the x3-axis (Case 2).

Fig. 8. Variation of normalized displacement and nonzero stress components along a circle ðH cos h;H sin h; 0Þ due to a surface unit

point force applied in the x2-axis (Case 2).
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4. Conclusions

Three-dimensional Green�s functions due to a point force in generally anisotropic composite laminates

have been derived within the framework of extended Stroh formalism and Fourier transforms. The in-

terfaces between different plies are perfectly bonded. The Green�s functions for the point forces applied at

the free surface, interface, and in the interior of a layer have been derived in the Fourier transformed

domain respectively. A proportional spring-type boundary condition is imposed on the top and bottom

surfaces. The spring-type boundary condition may be reduced to traction-free, displacement-fixed, and
mirror-symmetric conditions. Since the Green�s functions are attained in the Fourier transformed domain,

Fourier inverse transform is performed using a computational efficient numerical approach to express the

Green�s functions in the physical domain so that they can be implemented in the boundary element method.

Numerical examples have been given with a ten-layered orthotropic composite laminate with one surface

being displacement-fixed or mirror-symmetric and the other one being free of traction. The results showed

that the boundary and interfacial continuity conditions are satisfied in the computed Green�s solutions,

suggesting the validity of the present formulation and computational algorithm. The interesting charac-

teristics of the Green�s fields due to a surface point force have also been discussed. These fields are rather
complicated in the composite laminate.

Because the Green�s functions satisfy the interlaminar continuities and top and bottom traction-free

surfaces, modeling of the problems such as composite laminates with cutouts using boundary element

method becomes truly two-dimensional and discretization is only needed along the cutouts and lateral outer

boundaries. Therefore, in designing the composite bolted joints with many layers, the boundary element

method is robust and offers much better solution accuracy in modeling joints of complex geometries (Pan

et al., 2001; Yang et al., submitted for publication).

Fig. 9. Variation of normalized displacement and stress components along a vertical line ðH ; 0; x3Þ due to a surface unit point force

applied in the x2-axis (Case 2).
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